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Abstract 

We report simulations of nonlinear optical transmission of an optical beam through 

heterogeneous metallodielectric stacks (MDSs) under the action of nonlinear absorption. We use 

finite element Method (FEM) with two-dimensional transverse effects and transfer matrix 

method (TMM) simulation techniques as complementary methods to validate the FEM approach. 

We find a significant nonlinear absorption effect across spectral regimes where transmission is 

high. We compare results with energy and group velocity results, but the enhancement of the 

nonlinear response is attributed to field confinement in the metal layers.  

OCIS codes: 190.4420 Nonlinear optics, transverse effects in; 190.3270 Kerr effect.
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1. Introduction 

Nonlinear optical properties of heterogeneous materials with embedded metal nanoparticles have 

been the subject of many experimental investigations extending over the past quarter century [1-

5].  Examination of different materials using degenerate four-wave mixing (DFWM) techniques 

has turned up surprisingly large optical nonlinear responses for metal nanoparticles and revealed 

differing dominant mechanisms for the nonlinear optical behavior based on materials, particles 

size and shape, and excitation wavelength.   Effective nonlinear optical properties of ellipsoidal 

particle shapes and core/shell particles have been explored, as well [5, 6].  

Only the magnitude of the third-order nonlinearity can be obtained from DFWM 

experiments. However, applying the Z-scan technique both real and imaginary third-order 

contributions are extracted from the data [7, 8, 9].  Nonlinear optical properties of materials have 

been widely studied with the Z-scan technique for many different applications. As developed by 

Sheik-Bahae et al [7] a (Gaussian) laser beam is focused in free space; a sample is positioned 

along the propagation (Z) axis of the laser beam while measuring the irradiance on a detector in 

the far field. In a sample with a linear optical response no transmission change is expected; 

however, in a sample with a nonlinear response the beam has a focus or defocus (refractive) 

effect due to the real part of the nonlinearity and an amplitude effect due to its imaginary part. 

By analyzing the irradiance profile the Z-scan technique provides valuable knowledge about the 

sample’s effective nonlinear coefficients. 

In this paper we use numerical techniques to examine the nonlinear transmission 

characteristics of multi-layer thin film materials that are not described by one effective index 
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parameter because of important interference effects. One film layer is a metal and the other layer 

is a dielectric; the heterogeneous material is called a metallodielectric stack (MDS). 

Experimental investigations reported significant nonlinear response of MDSs with constituent 

metal films of silver (Ag), gold (Au) or copper (Cu) [10-13]. Nevertheless there is a need to 

investigate these materials with more efficient and accurate numerical techniques in order to 

account for the underlying physical processes observed in experiments. The nonlinear response 

of MDS samples were studied with copper films and a large effect was produced [13, 14].  

We apply a Finite Element Method (FEM) with radial symmetry to numerically solve for the 

Z-scan experiment of a MDS. Our model solves the corresponding nonlinear Maxwell’s 

equation; the amplitude and the phase of the electromagnetic field at the exit interface of the 

MDS are used for transforming to the far-field regime. The standard Z- scan technique which has 

been used extensively to characterize several kinds of materials including a 1D photonic band 

gap device, such as our MD stack, usually ignores the losses due to internal multi-interference 

and  back reflections,  which contributes to the absorption within each layer [9]. Even when these 

phenomena are considered in the case of a bidirectional beam propagation method, transverse 

effects important in describing the beam profile are often approximately handled. Meng [15] and 

Chen [16] studied the nonlinear response of photonic band gap structures with plane wave or one 

transverse dimension using the finite difference-time domain (FDTD) method. This method is 

both memory and computation cycle intensive. 

Inclusion of transverse effects in the simulations is necessary to capture the nonlinear 

refractive effects from Z-scan experiments. Even those who have included significant 

nonlinearity within some of the layers of the 1D photonic band gap stack in their model chose to 

address the nonlinear phase shift by assuming locally a plane wave is incident [16]. In the FEM 
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approach we treat a Gaussian input beam and define the physics of the problem to include back 

reflections, diffraction and multi-interference throughout the thin layers of material.  

2. Numerical Approaches 

We apply two approaches to studying the properties of our MDSs:  The transfer matrix method 

and the finite element method. For linear systems we find them to be complementary techniques 

for understanding the physics of our systems and validate the FEM simulations.. In the past we 

have used them for studying super-resolution in MDSs [17, 18].  The linear complex refractive 

indices of the metals (Cu, Ag) used in our simulations are taken from [19], while the values for 

the dielectrics (TiO2 and ZnS) are measured values obtained at the University of Dayton 

Nanofabrication Laboratory. Ellipsometric measurements of the optical constants of sputtered 

Ag layers (>15nm) agrees with published results [14]. 

To illustrate our computational approach two different MDS designs are reported in this 

paper.  The first structure, denoted as MDS1, is made of films with TiO2 and Cu and the second 

one, called MDS2, is made with ZnS and Ag films. The MDS1 sample in this paper has a total of 

9 layers with material and layer thickness as follows: TiO2 (40nm)/[Cu(20nm)/TiO2(80nm)] 

3.5/TiO2(40nm). The sample has a total of 80 nm of Cu metal and is 400 nm thick; the subscript 

3.5 on the square brackets indicated that the second layer is missing from the fourth period. The 

MDS2 sample has seven alternating layers of ZnS and Ag in the following sequence:   ZnS 

(40nm)/ [Ag (20nm)/ ZnS (80nm)] 2.5 ZnS (40nm).   The Cu metal was chosen because it is 

reported to have a high third-order nonlinear coefficient among the metals of interest [4-6, 10-

13]. Silver has been the subject of many experimental studies. Although in comparison to Cu, it 

is reported to have third-order nonlinearity is relatively small [5]. 
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2.1 Transfer Matrix Method 

We applied the transfer matrix method (TMM) to study the linear properties of the field for 

different angles of incidence and to determine the dispersion characteristics like the group and 

energy velocity indexes. In the linear regime the TMM is also used to verify that the FEM results 

accurately represent the physical problem. Using the TMM method the field is decomposed into 

plane waves and the forward- and backward-propagating amplitudes are found by using a series 

of 2x2 matrices that contain the optical path lengths in the adjacent media and the polarization-

dependent boundary conditions [20]. For linear media the TMM is a faithful representation of the 

field across the sample. The properties that are most often examined are the transmittance and 

reflectivity of the sample. The transmittance and reflectance amplitudes are expressed in 

complex form as 

rt ii
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 ||,||  .       (1) 

The quantities t and r are the phase changes in the transmitted and reflected wave amplitude 

due the complex interference between the different wave paths. The plane-wave transmittance 

and reflectance coefficients are defined for any angle of incidence as 
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i  and t  are the incident and transmitted  angles of incidence,  and 0n   and tn  are the incident 

and transmitted medium refractive indices, resp. The absorbance, A, is calculated using the 

relation 
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RTA 1 .       (3) 

The phases in Eq. (1) contain information about spectral dispersion of the transmitted and 

reflected waves [21].  The phase of the transmitted wave is related to an effective propagation 

constant used for optical interactions 

Lket 
,     (4)

  

where L is t he thickness of the sample and ke is the effective propagation constant. A quantity of 

interest in the present studies is the group velocity index, which is defined as: 
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The energy velocity in a dispersive medium is distinct from the group velocity and can be 

compared with the group velocity [22].   The definition of the energy velocity is based on the 

energy density 
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and the Poynting vector: 

)
2
1  HRe(ESav    .                                                             (7) 

The average energy velocity is defined as a ratio of the integral across the sample for these two 

quantities: 
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Analogous to the group velocity index the energy velocity index is defined as   

EE VcN /

  .      (9) 

The transmittance, absorbance and the energy and group indexes for these two designs 

are plotted in Figures 1 and 2 as a function of wavelength. The group and energy indexes both 

have relatively high values across the transparency regime and by both measures the light slows 

down further at the transmission edges. The group indexes for both samples have similar 

characteristics both are relatively flat values across the transparency regime, peak at the edges 

and then fall off.  The group index has a pronounced peak at the edges of the transmission 

spectral bands, which approaches or exceeds 20 for these portions of the transmission band. The 

energy velocity indexes on the other hand indicate slower light outside the transmission bands, 

where the signal is feeble. From the transmittance, absorbance and index results in Figure 1 a 

wide transmission spectral band is observed extending from below 500 nm to greater than 800 

nm.   

The spectral width of the transmission bands is determined by the properties of the 

materials, the thickness of the films and the number of layers. In our transparent metal designs 

the first and last layers are dielectric films that are half as thick as the bulk dielectric layers. This 

has the affect of raising the transmittance and reducing the local Fabry-Perot-like peaks in the 

spectrum [23].   
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The indexes do not directly reveal whether or not the field is localized in the metal films. 

At the long-wavelength, pass-band edge there is a peak in the absorbance that corresponds to the 

group index peak; the absorbance is an indication of the field’s localization in the metal film.  

However, the short wavelength pass band either does not have an absorbance peak or the 

absorbance peak does not coincide with the local maximum of the group index. We find that the 

field near these wavelengths is largely localized in the dielectric and we attribute the slow group 

velocity to a coupled Fabry-Perot cavity effect. 

2.2 Finite Element Method 

The open aperture Z-scan experiment reveals the effect of the two photon absorption on the 

transmission. The FEM used in this calculation is implemented using COMSOL 3.5a. The FEM 

method was also used to determine the closed aperture Z-scan transmissivity. The corresponding 

nonlinear wave equation which is solved by FEM in cylindrical coordinates, when the input 

beam of wavelength  is TE polarized and the free space wavenumber is  /20 k . The wave 

propagates in the z direction is given below 

01 2
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The relative magnetic permeability r  is unity for all the materials used in our calculations.  The 

dielectric function depends on the irradiance with the following dependence:  

 2,zLr n avS  ,       (11)  
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where Ln  is complex the refractive index of the metal or the dielectric in the linear regime, and 

the nonlinear coefficient, 

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

4
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n  , has a complex value.  The longitudinal component of 

the Poynting vector was used in Eq. (11). The Kerr coefficient, n2, affects the refractive index 

and the two-photon absorption coefficient, 2, produces a nonlinear absorption effect. The effect 

on the phase and log-amplitude is proportional to the irradiance profile.  In our calculations we 

take advantage of the cylindrical symmetry of the beam. The vector field is given by 
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The linear optical transmission and absorption characteristics of MDS1 using TMM are 

plotted in Figure 1. The FEM transmission spectrum was calculated for specific wavelengths and 

was in close agreement with the TMM results.  

The field inside the sample was calculated by both the TMM and FEM methods. Figure 

3a presents the TMM calculated field amplitude throughout the MDS1 sample at a wavelength of 

650 nm for three angles of incidence. The wavelength was chosen because it is near the 

transmittance maximum. TMM results on the left shows the S-polarized field dependence inside 

the sample for several angles of incidence.  We note that the field localization inside the metal 
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has the largest amplitude for normal incidence. Normal incidence should have a large nonlinear 

effect in the sample. On the right is a comparison of the fields at normal incidence in the sample 

found between the FEM and the TMM simulations.  The two results are nearly identical and 

provide a direct validation of the FEM approach for this case.  

      To validate the FEM simulations for the nonlinear transmission characteristics a Z-scan 

experiment of a homogeneous material was simulated.  An illustration of the transmission results 

for a Z-scan experiment is shown in Figure 4a.  The sample is moved a distance z from the focus 

of a Gaussian beam, as illustrated in Figure 4b. The Rayleigh range, z0=kw0
2/2, is used to scale 

the position of the sample relation to the beam’s focal plane. The beam waist at the focal plane is 

w0. In the far field an aperture is placed in front of the detector and the irradiance is recorded as a 

function of z. In a linear medium the transmittance is constant. On the left in Figure 4 are the 

results of our simulations for a L=400 nm thick sample with Kerr nonlinearity n2= 9x10-12 

cm2/W. The refractive index of the sample was chosen as 1.2 and the laser wavelength is 532 

nm. The material parameters are not specific to any realistic material, but have been chosen  to 

compare with analytic results.  The Gaussian beam waist is w0 = 20 microns and the peak 

irradiance at the focal plane is 11.93 GW/cm2. A CW beam is used in the simulations. The 

transmittance as function of position z for the Z-scan experiment is given by Eq. (9) below. 

Where NLE  and   LE  are the nonlinear electric field and linear electric fields   respectively at 

aperture which is determined by a Fourier transform of the electric field at the exit layer of the 

sample, and dr  is the radius of the aperture in front of the detector. The transmission is 

calculated from the relation: 
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The numerical Z-scan results are compared with the analytical results derived for a thin 

nonlinear medium [7]. The equation for the analytical result is: 
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where Z=z/z0 and = k0n2LI, where I is the irradiance, L is the sample thickness, and k0 is the 

free space wavenumber. The transmittance is normalized to unity in the linear regime.  The 

position and size of the peaks from the FEM simulations are in close agreement with the 

analytical results. The steeper drop of the FEM curves is attributed to non-perturbative nonlinear 

effects in the simulation. 

Next we consider the propagation of a typical CW Gaussian beam through the MDS 

samples. The complex field at the exit layer of the stack is used to calculate the normalized 

transmittance according to Eq. (13). We assume a CW source; with COMSOL we extract the 

phase and the amplitude of the Electric field at the exit layer of MDS, which is numerically 

integrated by taking a Bessel transform to determine the electromagnetic field at the far field. 

  The FEM Z-scan trace determines the overall nonlinear optical response of the samples. 

We obtain the nonlinear optical constant of the materials used in the simulations. As a check of 

the nonlinear FEM calculations both FEM and TMM results are compared for the linear case and 
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check agreement before solving the nonlinear problem.  The results are presented for two MDS 

samples. First we consider the sample composed of Cu and TiO2 layers (MDS1) and then we 

study the sample made from Ag and ZnS layers (MDS2). 

The origin of the nonlinearity in our simulations is attributed to electronic transitions, 

which are represented by a third-order susceptibility coefficient. Classical electromagnetic local 

field enhancements caused by electron oscillations known as surface plasmons will amplify the 

nonlinear effect. Additional nonlinear effects have been identified, such as, intraband and 

interband transitions which affect the susceptibility when electrons electrons fill empty states. A 

Fermi smearing effect, commonly known as the hot electron contribution, creates a sea of 

thermally excited electrons with energy levels around the Fermi energy. These effects were 

recently examined for Ag films by Owens et al. [10, 11]. The electron temperature changes under 

strong fluence irradiation are large enough to elicit strong transmittance changes.  

3. Z-scan Results 

The group and energy indexes are included to study wavelength regions for slow light within the 

material; as a first guess the slow light regions may be expected to show an enhanced of the 

nonlinear optical response and the results could be correlated with our simulations.  

 For MDS1 we chose refractive and absorptive third-order nonlinear parameters for Cu 

as: Wcmn /105 211
2

  and Wcm /105 6
2

  similar to the results published in [24]. 

However, in experiments these values will depend on wavelength; we simplify the problem by 

assuming constant nonlinear parameters for all wavelengths. The nonlinear parameters for TiO2 

are Wcmn /1033.1 216
2

 and Wcm /1013 9
2

 [25]. The normal incident, on-axis  electric 
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field amplitudes for five wavelengths across the transmission band are shown in Figure 5. The 

four regions delineated by vertical lines are the Cu metal films. The field profile at 820 nm has 

the strongest amplitude in the first two metal films and the one at 500 nm penetrates the least. 

These are both wavelengths where the group index has a peak and the energy index is high, but 

the absorbance peak only coincides with the long wavelength group index maximum. The metal 

nonlinearity produces its strongest affect in this sample at the long wavelength peak.    

The numerical results for the open aperture Z-scan MDS1 simulation are shown in Figure 

6. In this case the irradiance was constant and at the focal plane it is 1.9 GW/cm2. The linear 

transmittance in each case has been normalized to unity.  The strongest relative change around 

15 % in the transmittance is at 650 nm, where the penetration of the electric field in the metal 

films is strong. A strong dip of about 8 % is observed at 820 nm and its linear transmittance is 

about five times lower than at 650 nm. The field localization in each metal layer at 650 nm is 

high and coincidentally it has the largest transmittance of the cases considered in Figure 5. We 

do not find a correlation between slow light regimes and strong nonlinear responses. 

The Electric field amplitude for the MDS2 sample is plotted in Figure 7 shows the 

beam’s spread in both the longitudinal and transverse directions. The input radial beam shape is a 

Gaussian function, Eq. (8) with the sample placed at the focal plane. In this case the irradiance 

used is 47.74 GW/cm2. The nonlinear parameters we use for Ag are: 

Wcmn /102 211
2

 and Wcm /103.3 8
2

  [25].  The nonlinear refraction coefficient of ZnS 

is zero, while its two-photon absorption coefficient is Wcm /104.3 9
2

 . These values are 

taken from [25] and applied to all wavelengths. 
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The field amplitude squared for r=0 are plotted in Figure 7 for five wavelengths across 

the transmission band. At the short wavelength peak of the group index the field is localized 

outside the metal films.  The largest reported field localization occurs at the long wavelength 

peak. The field profile through the metals has a relative minimum in the metals to avoid 

excessive absorption losses in the structure. The field penetration for wavelengths 650 nm and 

680 nm is comparable with an overall edge at the 650 nm wavelength. 

The open aperture Z-scan of MDS2 is shown in Figure 8 for five different wavelengths. 

The irradiance at the focal plane was the same as applied in our simulations of MDS1. The 

weakest nonlinear effect was observed at the short wavelength edge of the transmission band. 

The 650 nm wavelength shows the strongest nonlinear effects and its value does not correspond 

to a peak in the group index or an absorption maximum. The smaller value of 2 for Ag leads to 

a smaller minimum in the normalized transmittance curves.  The results correlate with the field 

localization in the metal films. Namely, higher localization means larger nonlinear changes. The 

absorbance peaks, energy velocity and group velocity are no guide to the regions of greatest 

nonlinear responses.  

4. Conclusion 

Using FEM numerical simulations we studied the open aperture Z-scan results of nonlinear 

absorption in metallodielectrics. The localization of the field in the metal region always 

corresponded to a greater nonlinear effect.  The group and energy indexes or absorption 

maximum use as an indicator of the most effective nonlinear wavelengths were not highly 

correlated for the cases we studied. The simulations used a FEM technique to characterize the 

nonlinear transmission properties of 1D metallic PBG structures with material parameters taken 
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from the literature.  Our method incorporates the transverse beam profile, interference and 

diffraction effects.  The accuracy of the simulations was validated using TMM techniques and 

analytical results. Our purely refractive nonlinear results agree very well with the Z-scan theory 

and we conclude that the FEM technique is a faithful model for such systems where back 

reflections and resonances play an important role in the linear and nonlinear processes. This 

method applies equally well for multi-layer stacks made from purely dielectric materials. It can 

be adapted to study nonlinear optical properties of higher-dimensional photonic crystals. 

With the FEM tool the interesting physics of photonic crystals can be studied to include open 

and closed aperture Z-scan geometries. Besides potential broad-band optical limiter applications 

[28] metallodielectric stacks have potential for super-resolving imaging properties [17, 22, 29-

30]. The FEM technique can be applied to these problems, as well, resolves the very memory 

intensive problem, by assuming axial symmetry scaling down the dimension of the problem from 

three to two. 

We included the nonlinear refractive indices of the dielectric materials in our simulations; 

however, for the examples in this paper the two photon absorption coefficients of the metals 

dominated the nonlinear optical properties in these simulations. These results are a prelude to 

future experimental investigations of the nonlinear optical properties of MDSs.  In the future we 

will apply realistic input beam characteristics, including pulse operation, thermal effects, and we 

will use experimentally derived material properties to provide a direct comparison with 

experimental results. 
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Figure Captions 

Figure 1: Optical properties of the TiO2 and Cu multilayer system called MDS1. The sequence is a 40 nm 

thick TiO2 layer followed by three and one-half periods of 20 nm thick Cu film and 80 nm thick TiO2 film 

and finally a 40 nm thick TiO2 film at the other end. This design is a transparent metal and it is denoted 

by the following notation describing the thickness of each layer: TiO2(40nm)/[Cu(20nm)/TiO2(80nm)]3.5 

/TiO2(40nm). (a): Transmittance and absorbance versus wavelength. (b): Group and energy indexes 

versus wavelength. 

Figure 2: Optical properties of the ZnS and Ag multilayer system called MDS2. The sequence of layers 

using the same notation given in figure 1 is ZnS (40nm)/[Ag(20nm)/ZnS(80nm) ] 2.5ZnS(40nm). (a): 

Transmittance and absorbance versus wavelength. (b): Group and energy indexes versus wavelength. 

Figure 3: Shows field squared at a wavelength of 650nm throughout the MDS1 sample. The vertical lines 

are positions of the metal/dielectric interfaces. (a) TMM plot of field squared for TE polarization at 

different incident angles (0 degrees (solid), 30 degrees (long dash) and 45 degrees (dotted)). (b) FEM and 

TMM plot of the field at plane wave normal incidence. 

Figure 4: (a): Z-scan for a 400nm thick material whose refractive index at 532nm is 1.2 and has a 

nonlinear refractive index n2= 9x10-16m2/W. (b):  Z-scan setup. The sample is moved a distance z from the 

beam focus while recording the transmittance at a detector placed behind a closed (i.e. small) or open 

aperture in the far field regime. 

Figure 5: The electric field amplitude squared versus position in the sample MDS1. The vertical lines 

mark the interfaces between the TiO2 and Cu films. 

Figure 6: Open Aperture Z-scan Curves for MDS1. The position of the sample is normalized by the 

Rayleigh range, z0. 
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Figure 7: The electric field amplitude squared versus position in the sample MDS2. The vertical lines 

mark the interfaces between the ZnS and Ag films. 

Figure 8: Open Aperture Z-scan Curves for MDS2. The position of the sample is normalized by the 

Rayleigh range, z0. 
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Figure 1   Katte et al. 
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Figure 2   Katte et al.
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Figure 3 Katte et al. 
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Figure 4  Katte et al. 
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Figure 5 Katte et al. 
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Figure 6  Katte et al 
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Figure 7 Katte et al. 
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Figure 8 Katte et al. 

 

 

 

 

 


